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This paper first describes an apparatus for measuring the Nusselt number N versus 
the Rayleigh number R of convecting normal liquid 4He layers. The most important 
feature of the apparatus is its ability to provide layers of different heights d ,  and 
hence different aspect ratios r. The horizontal cross-section of each layer is circular, 
and 1" is defined by r = D/2d where D is the diameter of the layer. We report results 
for 2.4 < r < 16 and for Prandtl numbers Pr spanning 0.5 5 Pr 5 0.9. These results 
are presented in terms of the slope N ,  = R,dN/dR evaluated just above the onset 
of convection a t  R,. We find that N ,  is only a slowly increasing function of r in the 
range 6 5 f 5 16, and that i t  has a value there which is quite close to 0.72. This value 
of N ,  is in good agreement with variational calculations by Ahlers et al. (1981) 
pertinent to parallel convection rolls in cylindrical geometry. Particularly for r 5 6, 
we find additional small-scale structure in N ,  associated with changes in the number 
of convection rolls with changing r. An additional test of the linearized hydro- 
dynamics is given by measurements of R,. We find good agreement between theory 
and our data for R,. 

1. Introduction 
Work on nonlinear systems has stimulated current interest in Rayleigh-BBnard 

convection. Several authors including Libchaber & Maurer (1978, 1980), Maurer & 
Libchaber (1979, 1980); Ahlers (1980); Ahlers & Walden (1980); Behringer et al. 
(1982); and Ahlers & Behringer (1978a, b )  have shown that the aspect ratio r 
significantly affects convective flows. By r we mean the characteristic horizontal 
length of the layer expressed in units of its height d.  In  order to better understand 
these observations, we constructed an apparatus which allows us to vary r 
continuously and in situ. The apparatus has a circular cross-section, and the aspect 
ratio is defined by 

D r=- 
2d ' 

where D is the diameter. In  this paper, we characterize the steady convective flows 
preceding turbulence by presenting precise measurements of the heat transport as 
a function of the Rayleigh number R, These measurements cover the range 
2.4 < r 5 16. An important feature of these experiments is that they provide an 
extensive set of cryogenic measurements which both spans a large range of aspect 
ratios and has uniform experimental conditions. We present our results in terms of 
the Nusselt number N ,  a dimensionless measure of the heat transport formed by the 

f Present address: Department of Physics, University of Maryland, College Park, MD 20742, 
USA. 
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ratio of the heat flux traversing the layer to the heat flux that would be needed to 
sustain the same temperature difference across the layer in the absence of convection. 
We discuss these measurements in the light of recent calculations (Charlson & Sani 
1975; Brown & Stewartson 1978, 1979; Ahlers et al. 1981) which relate the flow 
pattern formed by the convection rolls, confined in a cylindrical container, to the 
Nusselt number. The present data form a background for extensive studies of 
time-dependent flows that have been obtained using this apparatus and that have 
been briefly discussed elsewhere (Behringer, Gao & Shaumeyer 1983; Gao & Behringer 
1984). Part 2 of this work (which is in preparation) will describe the time-dependent 
states in detail. 

Three parameters are needed to describe the state of the convective flow ; these are 
r, R and the Prandtl number Pr. The Rayleigh number is defined conventionally as 

(2) 
ap gd3 AT R =  

KV 

where the fluid parameters ap,v and K are respectively the isobaric expansion 
coefficient, the kinematic viscosity and the thermal diffusivity. Additionally, AT is 
the temperature difference across the layer, and g is the acceleration due to gravity. 
The Prandtl number is defined as 

V 

K 
Pr = -. (3) 

Liquid 4He in the normal phase forms the operating fluid for these experiments, 
and the Prandtl numbers studied all lie in the range 0.5 5 Pr < 0.9. The advantages 
to be gained by using cryogenic techniques to study convection have been discussed 
by Ahlers (1974, 1975), Behringer & Ahlers (1982) and by Behringer (1985). 

For R 2 R,, with R, corresponding to the onset of convection, N is expected to 
increase linearly with R, and a useful parameter is the slope 

dN 
dR 

Nl = R,- (4) 

evaluated for R just above R,. Our primary results are values of N , .  
Of particular relevance to this work are calculations by Charlson & Sani (1975) 

giving the finite-amplitude axisymmetric convective flows in low-aspect-ratio cylin- 
drical containers, as well as analysis by Brown & Stewartson (1978, 1979) and by 
Ahlers et al. (1981) pertaining to large but finite cylindrical containers. The aspect- 
ratio range of the present experiments extends from the region considered by 
Charlson & Sani (1975) to that considered by Brown & Stewartson (1979) and by 
Ahlers et al. (1981). In addition Schluter, Lortz & Busse (1965) have considered a 
horizontally infinite layer and calculated N ,  for flow patterns consisting of straight 
rolls, hexagons and squares. For straight parallel rolls, these authors predict a slope 
N,, given by 

N , ,  = g-' = (0.69942-0.00472Pr-1+0.00832Pr-2)-1. (5) 

Also useful are calculations by Clever & Busse (1974) which give N as a function 
of Pr and R for several convectisn-roll wavevectors a. These calculations pertain to 
a horizontally infinite layer of straight parallel rolls with a spatial periodicity 2ndla. 

Charlson & Sani (1975) examined the extreme cases of conducting and insulating 
sidewalls and a variety of Prandtl numbers. Their studies for Pr = 1 corresponds best 
to the Prandtl numbers in our experiments. Values of r studied by Charlson & Sani 
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which fall within or near our experimental range are r= 1.00, 2.25 (insulating 
sidewalls) and 2.55, 2.66 (conducting sidewalls). For the first boundary condition, the 
calculated values of N ,  are 0.26 and 0.37 for the respective aspect ratios r = 1 .OO 
and 2.25. However, when the walls are conducting, Nl depends strongly on the 
direction of flow and whether N is evaluated at the top or the bottom of the layer. 
For conducting walls and Nl evaluated at the bottom of layer the calculated value 
of N ,  is 0.53 for r= 2.55, and 0.46 for r= 2.66. In  the present experiments the 
sidewalls contribute approximately one quarter of the total heat flux, and therefore 
they correspond more closely to insulating than conducting sidewalls. 

Charlson & Sani found that the axisymmetric solutions may be unstable to 
non-axisymmetric modes for R greater than about 1.04R, to 1 . lRc, depending on Pr 
and r, although their tests of stability to non-axisymmetric disturbances were only 
made for conducting sidewalls. Also, Cross (1982) has concluded that parallel rolls 
will be preferred over axisymmetric rolls in a cylindrical container. In this regard, 
experiments in cylindrical containers by Stork & Muller (1974, Kirchartz et al. 
(1981), Steinberg, Ahlers & Cannell (1984), Croquette, Mory & Schosseler (1983), 
Ahlers, Cannell & Steinberg (1985), Heutmaker, Fraenkel & Gollub (1985) and 
Pocheau, Croquette & Le Gal (1985) show non-axisymmetric roll patterns in 
cylindrical containers in the absence of strong perturbations a t  the sidewalls to 
enforce the axisymmetry. I n  particular, Pocheau et al. (1985) find nearly parallel 
rolls for R close to R, in an experiment using argon gas (Pr = 0.69) in a cylindrical 
container with r = 7.66. These observations should be contrasted to older results (for 
instance Hoard, Robertson & Acrivos 1970; Koschmieder & Pallas 1974; Somerscales 
& Dougherty 1970) in which axisymmetric flows were observed. The more recent 
work indicates that axisymmetric states occur when there is thermal forcing at the 
sidewalls, either by some steady perturbation (Croquette et al. 1983) or by dynamic 
forcing (Steinberg et al. 1984). 

Ahlers et al. (1981) have considered the effect of the sidewalls on several different 
flow patterns within a cylindrical geometry. Of interest here are axisymmetric flows 
with and without a central node in the flow amplitude, and cylindrically confined 
straight parallel rolls. Each of these cases was treated differently by the above 
authors; here, it  is useful to briefly summarize their approach and results for the three 
cases. 

( a )  Axisymmetric with central node. The authors carried out the most extensive 
study for this case. Very close to the onset of convection, when only one mode is 
relevant, they find 

where 

( 1 + E , )  N l ,  
1.6595 ' 

N ,  = 

(7)  

and c: = 0.148 for the rigid non-slip horizontal walls considered here. Also, N , ,  is 
given in ( 5 ) .  As E ,  defined in terms of the aspect-ratio-dependent critical Rayleigh 
number R, by 

increases above E , ,  a multi-mode description becomes necessary. With the addition 
of more modes, the authors find an upward curvature in N(e) .  

( b )  Para.lle1 rolls. In  this case, the authors used a trial function corresponding to 
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parallel rolls in a cylindrical geometry in a variational procedure to obtain N. The 
result, 

(9) 
(N-1)R - ~ ( 1  +E,) 

R, 1.38 
-- 

with 

does not contain the higher-order effects considered in the previous case. For large 
r, the slope is then N ,  = (1.3t3-l = 0.72. 

( c )  Axisymmetric uiithJinite centre awLplitude. I n  this case, Ahlers et al. (1981) refer 
to the earlier work by Brown & Stewartson (1979). These latter authors studied 
axisymmetric convection in large but finite-r cylindrical containers with stress-free 
rather than non-slip horizontal boundaries. Thus, the quantitative applicability of 
their results to experiments is limited. An interesting feature of these calculations 
is that  although convection begins at R,, where R, is the critical Rayleigh number 
for the stress-free boundary conditions used, the Nusselt number will increase only 
slowly until (R-R,)/R, exceeds z 2 /r2 .  This feature is tied to the finite amplitude 
allowed a t  the centre of the container, and in the limit (Inr)-'-tcO, the effect 
vanishes. We also note that Brown & Stewartson (1978, 1979) consider the effect of 
sidewall heating which causes an imperfect bifurcation. 

Ahlers et al. (1981) have used the amplitude-equation formalism (Newel1 & 
Whitehead 1969; Segel 1969) and their calculated values of N ,  to interpret heat- 
transport data for liquid helium obtained using a cylindrical geometry and a fixed 
aspect ratio, r = 4.72. Experimental results for Nl for liquid helium in a cylindrical 
geometry have also been obtained by Pfotenhauer (1984), Pfotenhauer & Donnelly 
(1985), Pfotenhauer, Lucas & Donnelly (1984). Behringer et al. (1982) and Behringer 
& Ahlers (1977, 1982). These previous measurements vary considerably from one 
experiment to another. It is not always clear whether these variations are due to 
differences in experimental conditions, or whether they truly reflect the effect of 
aspect ratio on the flow. 

Additional theoretical work that is useful includes the calculations by Charlson 
& Sani (1970, 1971) of the critical Rayleigh numbers for convective modes in a 
cylindrical container. The variable-r apparatus provides a unique test of the cubic 
dependence of R on layer height d,  and a test of the inhibiting effect of the sidewalls 
on the onset of convection. 

The remainder of this paper is organized as follows. A detailed description of the 
apparatus is given in $2. I n  addition to  the variable-r apparatus by which most of 
the data were obtained, we also describe two fixed-aspect-ratio experiments with 
r= 6.22 and 7.87 made by Behringer et al. (1980, 1983). We discuss experimental 
procedures and the liquid properties which determine the Rayleigh and Prandtl 
numbers for our experiments in $3. I n  particular, we discuss the extent to which our 
experiments satisfy the Oberbeck-Boussinesq approximation. We present our results 
in $4 where we compare them to theory and previous work. Section 5 contains a 
summary. 

2. Apparatus 
2.1. General arrangement : variable-r experiments 

Much of the peripheral apparatus bears an  overall similarity to that described by 
Behringer & Ahlers (1982), and we refer the interested reader to  that work. In this 
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FIGURE 1. Schematic of low-temperature portion of variable-r apparatus. 

subsection we briefly describe the general features of the experiment, and in the 
following subsection we focus on the new features that allow us to vary Tin situ with 
high precision. A third subsection describes pertinent electronics, and the final 
subsection describes two fixed-aspect-ratio containers. 

The low-temperature portion of the experiment consists of a conventional cryostat 
having a vacuum can immersed in liquid 4He at 4.2 K. The cryostat rests on 
bellows-sealed antivibration mounts. The apparatus inside the vacuum can is 
depicted in figure 1.  Immediately below the top of the vacuum can is a continuously 
operating 4He refrigerator after De Long, Symko & Wheatley (197 1). The refrigerator 
is annular in shape in order to  allow a pushrod to  extend from a bellows sea1 at the 
vacuum can to the sample volume. The pushrod also extends up to the top of the 
cryostat where it is driven by a screw mechanism. The pitch of the screw is sufficiently 
gentle that  we can vary d by steps as small as 1 x mm corresponding to  changes 
in rofabout  1 x. However, these changes can be resolved with much greater precision 
as discussed later. Below the refrigerator is an isothermal platform (Ahlers 1971) 
followed by the sample chamber. 

2.2. Sample chamber : variable-f experiments 
As shown in figure 2, the sample chamber is modularly constructed of oxygen-free 
high-conductivity (OFHC) copper, and the pieces are sealed together using indium 
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FIGURE 2. Scale drawing of sample chamber used in the variable-r experiments. 

O-rings. The body contains several hundred 1.5 mm diameter holes which provide 
for a 12 cm3 reservoir of liquid *He a t  saturated vapour pressure. This technique 
guarantees rapid thermalization of the liquid and a large thermal ‘mass’. The 
variable-aspect-ratio convection apparatus, which has cylindrical geometry, is an 
integral part of the sample chamber. Both the upper and lower boundaries of the fluid 
layer are formed by cylinders made of OFHC copper. The lower boundary consists 
of an OFHC copper plug which seals one end of a thin (0.012 cm wall) stainless-steel 
tube. The seal is made by first soldering an OFHC copper ring on the outside of the 
tube and then by securing the plug to the ring with screws and epoxy (Emerson and 
Cummings, no. 1266). The ring provides good thermal contact to the walls a t  the level 
of the lower liquid boundary. The upper boundary is the face of a moveable OFHC 
copper piston which slides inside the stainless-steel tube. Thus, in changing the aspect 
ratio we change the height of the layer at fixed radius. The clearance between tube 
and piston, as measured a t  room temperature, is 0.00062 cm on the radius. This 
tolerance was achieved by soldering the tube into an OFHC copper sleeve, boring 
out the inner diameter on a well-aligned lathe, and then turning the piston to  size. 
A close tolerance is desirable for two reasons. First, the horizontal surfaces bounding 
the fluid will only remain parallel if the gap between the piston and the tube is small. 
Secondly, when the gap is small the possibility of poor thermal contact where 
the liquid, vertical surfaces, and horizontal surfaces meet will be minimized. In  order 
to provide further thermal contact to the walls, a copper clamp a t  the top 
temperature moves with the piston and makes contact with the outside of the wall 
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at the level of the top plate-fluid interface. The copper sleeve containing the 
stainless-steel tube is sealed with an indium O-ring into the bottom of the sample 
chamber. The piston is attached to a bellows which is also sealed to the sample 
chamber with indium O-rings. 

The faces forming the horizontal boundaries of the fluid are polished to a reflecting 
finish, and then tested for flatness using a monochromatic light source and an optical 
flat to form an air wedge. The faces are flat to  within about 2 p m ,  compared with 
a typical value of d of about 1 mm. 

The choice of dimensions of the region containing the convecting fluid represented 
a compromise between a number of competing considerations. Of primary importance 
was a desire to have aspect ratios stretching from very small to moderately large 
values. It is useful to have the diameter of the convection region as large as possible 
in order to minimize the effect of the vertical walls. However, we could not allow the 
diameter, and hence d,  to become so large that the critical temperature differences 
AT,cc d-3 became too small. Similarly, if too small values of d were used the fluid 
would cease to satisfy the Oberbeck-Boussinesq approximation discussed below ; also 
geometric imperfections would be difficult to avoid. A final consideration in 
determining the diameter of the convection region was the characteristic times 
anticipated for the flows. There are two relevant timescales: t ,  = d 2 / K ,  the vertical 
thermal diffusion time, and th = B 2 / 4 ~  = P t , ,  the horizontal thermal diffusion time. 
If d was made too large, excessively large observation times would be necessary; 
conversely, if d was made too small, the instrumental time constants could have 
greatly exceeded t,. 

2.3. Thermometry and height measuring electronics cariable-r experiments 

Temperatures were measured using germanium resistors calibrated against the 4He 
vapour-pressure temperature scale, T58, (Dijk et al. 1960) and five-lead bridge 
techniques (Mueller, Ahlers & Pobell 1976). One bridge containing the germanium 
thermometer R, was used to  regulate the top (cold) temperature (figure 2). A second 
bridge was used to measure the resistance ratio of thermometer R, to thermometer 
R,, yielding a differential measurement of the temperature difference across the 
layer. The five-lead differential technique has the advantage of being relatively 
insensitive to any small changes in self heating or lead resistances. Also, the parasitic 
heating from the thermometer injected into the bottom of the layer is half as large 
with a differential configuration as with a direct measurement of the bottom-plate 
germanium thermometry resistor R, against a fixed standard resistor attached to the 
bottom. 

The height of convection layer was measured by means of a capacitative technique 
as depicted in figures 2 and 3. This arrangement requires a fixed capacitor Cf and 
a variable capacitor C, which serves as a transducer of the layer height. C, is a 
parallel-plate capacitor with one plate attached to the sample chamber and one plate 
attached to the piston. The spacing between the plates of C, was adjusted so that 
the value of C, was about 8 p F  when the height d of the convection region was zero. 
The second capacitor, Cf, was a 2 pf silver-mica capacitor heat sunk to the sample 
chamber. Values of C, were obtained in terms of the ratio R, = C,/(C,+Cf) via a 
three-lead bridge circuit shown in figure 3. To a first approximation, (Rhl- 1 )  cc d. 
Typically, over the course of a day or two, R, was stable to  6R,/R, x implying 
a similar stability in d and r. Over many days, the stability was only about a factor 
of two worse, 
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FIGURE 3. Three-lead bridge circuit for measuring C,. From C, we determine the height of the layer 
d. Cf is a fixed capacitor. R, is read directly from the ratio transformer when the lockin amplifier 
is a t  null. 
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FIGURE 4. Scale drawing of two fixed-aspect-ratio cylindrical containers used by Behringer 
et al. (1982). These containers have aspect ratios of 6.22 and 7.87. 

2.4. Fixed aspect ratios - r = 6.22 and 7.87 

Included in this work are results obtained with two fixed-aspect-ratio cylindrical 
containers having r = 6.22 and 7.87 respectively. Time-dependent flows obtained 
with these have been presented by Behringer et al. (1982). As sketched in figure 4, 
these containers consist of thin-walled (0.012 cm) stainless-steel tubes sealed at both 
ends by OFHC copper inserts. These inserts are attached to  the tube with epoxy 
(Emerson and Cummings, 1266) and screws via OFHC copper rings. Dimensions 
obtained at room temperature are given in table 1 .  Except for their fixed aspect ratio, 
these containers are qualitatively similar to  the variable-aspect-ratio experiment. 
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Container Diameter d (mm) Height d (mm) 
r = 6.22 12.46 1.002 
r = 1.87 8.992 0.512 
variable-r 12.41 2.62 (maximum) 

TABLE 1 .  Dimensions 

2.5 

2.0 

h g 1.5 
Y 

P 
s 
c M .- r" 1.0 

0.5 

0 

0 1 2 3 1 

Rh'-1 

FIGURE 5. Height d versus R,' - 1 direct measurement at room temperature (triangles) and by 
thermal conductance (circles). The solid curve represents a least-squares fit. 

However, they were mounted in a different cryostat which is described by Shaumeyer 
& Behringer (1986). In this case, differential thermometry was not used. Rather, as 
in the work of Behringer & Ahlers (1982), the top temperature was held fixed and 
the bottom temperature was measured via a germanium resistance thermometer 
paired with a fixed resistor in a five-lead a.c. bridge. Thermometers for the top and 
bottom were calibrated against both the T58 4He temperature scale (Dijk et al. 1960) 
and the Te2 3He temperature scale (Sydoriak, Sherman & Roberts 1964). 

3. Procedures and fluid parameters 
3 , l .  Procedures 

Before cooling to liquid-helium temperatures, the height d of the variable-rapparatus 
was calibrated as a function of C, using a micrometer reading to the nearest 
0.00025 cm. Values of d were deduced by measuring the displacement of the piston 
relative to its fully closed position. The condition d = 0 provided a reproducible 
reference which was independent of the small changes associated with cooling from 
room temperatures to liquid-helium temperatures. Figure 5 shows d versus (Rhl- 1)  
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from a typical calibration. Except for the fringing effects a t  large d ,  the result is a 
nearly straight line as expected. This calibration method has the disadvantage of 
being a room-temperature calibration. Abcordingly, we also determined d as a 
function of Rh by the thermal conductance &/AT of the fluid-filled container; here 
Q is the heat flux traversing the layer. Under steady conditions below the onset of 
convection &/AT oc d-l independent of AT. I n  order to  obtain the proportionality 
constant between &/AT and d ,  we required that the measured fluid conductivity 
agree with existing measurements for the thermal conductivity of 4He (Kerrisk & 
Keller 1969; Ahlers, Hohenberg & Kornblit 1982). A comparison between the two 
calibration methods in figure 5 shows an agreement that is within a few percent over 
the full range of d. Accordingly, uncertainty in r is of the same size, although the 
precision with which successive values of r can be determined is much higher. 

Before liquid was condensed into the sample chamber, the vertical wall (empty) 
conductivity was measured as a function of temperature. For the variable-r 
apparatus the wall conductivity was obtained a t  a number of different aspect ratios. 
After the liquid was condensed into the sample chamber, data taking was initiated 
by obtaining a value of the differential thermometer (bottom thermometer for 
fixed-aspect-ratio containers) without an applied heat current. Then, a heat current, 
measured by a four-lead potentiometric method with a precision of 0.03 yo, was 
supplied through a non-inductive wire-wound resistance ( x 5 k n )  glued to the 
bottom of the convective cell with GE 7031 varnish. This heat current was typically 
set initially to  less than the critical value needed to generate convection. Following 
an equilibration time, the heat current was increased in small steps with intervening 
times of 15t, to 20t,. From time to time the heater current was turned off to check 
for drifts in the thermometers. 

3.2. Fluid properties 

Barenghi, Lucas & Donnelly (1981) have made a very useful tabulation of the fluid 
properties of liquid *He a t  saturated vapour pressure, and they have presented their 
results in the form of spline fits. From these data, we have calculated the Prandtl 
number for the various temperatures used in our experiments. Most of our data were 
obtained for 0.50 < Pr < 0.75, although some data were obtained for Pr as large as 
0.9. 

A particular relevant question concerns the Oberbeck-Boussinesq approximation 
(Oberbeck 1879; Boussinesq 1903). Although we could initiate convection in the 
variable-r apparatus for aspect ratios up to r = 25, we have limited our studies to 
r s  16 to  guarantee clearly Boussinesq flow. A quantitative measure, QOB,  of the 
departure from this approximation has been given by Busse (1967) (see also Walden 
& Ahlers 1981). We have calculated values of QOB at R, for cases relevant to our 
experiments (see table 2).  I n  these calculations we have again used the thermo- 
hydrodynamic data tabulated by Barenghi et al. (1981) and assumed that R, can be 
approximated by 1707.8. We find that IQoBl 5 0.03 for most of our measurements: 
the largest value of IQoBI is 0.26. 

4. Results 
4.1. Critical Rayleigh numbers 

The critical Rayleigh number is determined from ( 2 )  once the critical value AT, of 
AT is determined. Values of AT, were determined by fitting the Nusselt number 
N(AT) to a polynomial and then determining the intersection of the polynomial with 
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the line N = 1 .  Typical examples of N are given in figures 6-9 and discussed in the 
following section. Owing to the presence of some small amount of rounding in the 
heat-transport curves, a given fit was made with a lower limit on the allowed AT'S 
that was slightly greater than the estimated AT,. Some of the rounding may be due 
to the effect of the sidewalls as discussed in $ 1  ; i.e. N may increase very slowly with 
R just above R, even though the bifurcation is sharp. However, it  is difficult to 
determine whether this is the case or whether the rounding is caused by very small 
flaws in the apparatus which lead to an imperfect bifurcation. Since, experimentally, 
the amount of rounding in N ,  expressed as a function of RIR,, depends very little 
on f, we may have systematically overestimated AT, by a small but in percentage 
terms nearly uniform amount. The largest AT included in a fit was limited for larger 
aspect ratios by the presence of a transition to a time-dependent flow state occurring 
at. a Rayleigh number which we define to be R,. Typically RJR, z 1.1 when r is 
large. Values of RJR,  and a discussion of flows near R, have been given by Behringer 
et al. (1983) and by Gao & Behringer (1984) ; a more extensive discussion, will be given 
in Part  2 of this work. 

Fits of N(AT) were made with linear and quadratic polynomials in AT, and the 
resulting values of ATc were found to be relatively insensitive to the degree of 
polynomial. The quality of the fit as measured by the standard deviation was not 
usually improved significantly by the presence of a quadratic term as long as values 
of AT/AT, were restricted from the curved region near R, and the region well above 
R, where the Nusselt curve develops significant downward curvature. 

The largest errors in determining R, come from uncertainty in the fluid parameters. 
Of these, the greatest uncertainty probably occurs for the shear viscosity 7 and hence 
v. The combined uncertainty in R, from K ,  v and ap is probably a t  least 20%, a 
relative uncertainty considerably larger than those in d or AT,. Using a typical aspect 
ratio, r = 5.330 we obtain from the measured AT, and fluid parameters a value of 
R, = 1510+300 which is in agreement with the expected value. Accordingly, we 
have chosen to present results for R, that have been normalized a t  a relatively large 
aspect ratio to the predicted value 1707.8 for an infinite layer; these normalized 
values are shown in figure 10. By normalizing our data we also largely removed 
ambiguities as to whether the onset of convection occurs a t  the beginning of the 
rounded region or a t  a slightly higher Rayleigh number. The data agree within the 
scatter of a few percent with the squares which give theoretical predictions for R, 
by Charlson & Sani (1970) applicable for r 5 8. These predictions pertain to the 
axisymmetric modes in a cylindrical container with insulating sidewalls. Critical 
Rayleigh numbers for non-axisymmetric modes have also been calculated by 
Charlson & Sani (1971), but the difference in critical Rayleigh numbers between the 
various types of modes is usually too small to be observed experimentally unless the 
aspect ratio is very small. We also show in figure 10 predictions by Ahlers et al. (1981) 
for parallel rolls in a circular container (dash-dot line) and an axisymmetric flow 
pattern with a central node (dashed line). In  these cases as well, the data for R, 
cannot distinguish the pattern, although, on average, the data tend to fall somewhat 
lower than the predictions for axisymmetric flow with a vanishing amplitude at the 
centre. Likewise, the small ripples in the values R,(O predicted by Charlson & Sani 
(1970) and associated with changes in the number of convection rolls cannot be 
detect'ed in the present experiments. The data of figure 10 do provide a particularly 
strong test of the rapid dependence of R on d ,  since in these data d3 varies by a factor 
of about 300. 

8 B L M  174 
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FIGURE 6. The Nusselt number N versus R/R, for four cases which sample the range of variable 
aspect ratios. A, r = 2.387; .,7.604; a, 12.093; v, 15.770. Except for r = 2.387, the data shown 
span the complete range of time-independent convective states. 

r 
2.387 
2.604 
2.81 1 
2.941 
3.157 
3.568 
3.746 
3.946 
4.550 
4.771 
4.829 
5.049 
5.286 
5.311 
5.330 
5.815 
6.070 
6.070 
6.070 
6.244 
6.300 
6.485 
6.573 

Pr 

0.77 
0.75 
0.75 
0.75 
0.75 
0.75 
0.75 
0.65 
0.71 
0.71 
0.59 
0.71 
0.71 
0.71 
0.57 
0.71 
0.71 
0.56 
0.59 
0.56 
0.71 
0.56 
0.71 

N ,  
0.609 
0.552 
0.524 
0.556 
0.386 
0.609 
0.602 
0.675 
0.518 
0.656 
0.672 
0.646 
0.621 
0.626 
0.526 
0.613 
0.683 
0.669 
0.668 
0.704 
0.691 
0.715 
0.652 

TABLE 2. 

- QOB r Pr 

0.003 6.752 0.56 
0.002 6.858 0.56 
0.003 7.086 0.56 
0.003 7.322 0.56 
0.004 7.604 0.56 
0.006 7.848 0.56 
0.007 8.130 0.56 
0.004 8.224 0.56 
0.008 8.390 0.56 
0.009 8.650 0.56 
0.005 8.909 0.56 
0.01 1 8.994 0.50 
0.012 9.138 0.56 
0.0 12 9.395 0.56 
0.006 9.411 0.56 
0.016 10.814 0.50 
0.019 11.735 0.56 
0.013 12.093 0.56 
0.012 12.319 0.56 
0.010 12.591 0.56 
0.020 12.610 0.50 
0.010 12.823 0.56 
0.024 15.770 0.53 

Values of the initial slope N ,  

Ni -QOB 

0.656 0.013 
0.603 0.014 
0.680 0.015 
0.714 0.016 
0.735 0.020 
0.681 0.021 
0.646 0.022 
0.707 0.023 
0.722 0.025 
0.746 0.027 
0.709 0.030 
0.648 0.052 
0.665 0.032 
0.704 0.035 
0.690 0.035 
0.687 0.090 
0.770 0.068 
0.773 0.074 
0.780 0.080 
0.750 0.084 
0.710 0.14 
0.787 0.088 
0.733 0.26 



Heat-$ouj experiments in liquid 4He 22 1 

1.6 

J 1.4 

I - 3 
z 1.2 

1 .O 

1 I I I 

I I I I 
0.5 1 .o I .5 2.0 

RIRC 

5 

FIGURE 7. Nusselt number N versus RIR, for r = 2.387. The arrows indicate transitions in the 
flow pattern. At this point the Nusselt number is discontinuous. 

4.2. Heat transport 
Measurements of N just above R probe the weakly nonlinear flow in that region. 
Typical results for N ( R )  are given in figures 6-9, and in a compact form as N , ( Q  in 
figure 11 and table 2. Several features of figure 11 are noteworthy. In  particular, for 
not too small aspect ratios, r 2  6, the values of N ,  obtained in the present 
experiments fall quite close to the large-rvalue 0.72 predicted by Ahlers et al. (1981) 
for straight parallel rolls in a cylindrical container. Although there is an overall 
increase in Nl with aspect ratio, for r 2 6, the increase is quite slow. Ahlers et al. 
(1981) predict such a slow variation with r for the case of cylindrically symmetric 
flow with a central node. For instance, from figure 1 inset of Ahlers et al. (1981), we 
obtain the thin solid curve in figure 1 1 .  This curve, which attempts to give the general 
sense of their results, shows ( N -  1)/e from figure 1 of Ahlers et al. assuming typical 
€-values (0.3 to 0.1 as f changes from 2.4 to 16) for the fits in the present experiments. 
However, for the case of parallel rolls in a cylindrical container comparable 
calculations do not yet exist. 

The data show oscillatory variations, particularly at low aspect ratio, emphasized 
by the solid curves, which reflect the number of convection rolls present. The vertical 
bars, indicating the period of the oscillations in N l ( T ) ,  are obtained independently 
from oscillations in R ,  as a function of r as given by Behringer et al. (1983) and Gao 
& Behringer (1984). The data for R, are particularly sensitive to the number of 
convection rolls and provide a clear indication of changes in the flow pattern with 
changing r. Although current theory for finite r d o e s  not, to our knowledge, describe 
these variations of iVl with the number of convection rolls, it is reasonable to expect 
them to occur. It is possible to make a rough comparison with calculations by Clever 
& Busse (1974) pertaining to a horizontally infinite layer, which give N ( R )  for several 
wavevectors a and for several Prandtl numbers. From their calculations a t  
Pr = 0.71, we estimate that the fractional change of N ,  with a is N;l dN,/da z 0.6. 
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FIQURE 8. Nusselt number N versus RIR, for r = 3.157. As in figure 7 ,  the arrows indicate 
changes in the convective roll pattern. 
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FIGURE 10. Solid circles give values of R, versus r. The values of R, have been normalized a t  large 
r to the value R, = 1708. The squares represent the calculations of Charlson & Sani (1970) for 
insulating sidewalls. Other curves give the values of R, calculated by Ahlers et al. (1981) for parallel 
rolls (--.--.--.-). and axisymmetric rolls with a central node (----). 

We obtain an estimate of a by assuming, as in Gao & Behringer (1984), that 
a x n ( $ f )  where n is an integer which gives the number of rolls, if the rolls are nearly 
parallel, or twice the number of toroidal rolls, if the pattern is axisymmetric. A 
reasonable set of wavevectors is obtained if we assume n = 6 for the region between 
our lowest aspect ratio, r = 2.4, and the left-most dashed line of figure 11,  and if we 
assume that n changes by 2 each time a vertical dashed line is crossed. On crossing 
a vertical dashed line, the change in wavevector is then approximated as 

the corresponding change in N ,  is then approximated by 

O.6nN1 
AN, x 7. 

An inspection of figure 1 1  shows that this procedure overestimates the experimentally 
observed changes in N ,  by a factor between 2 and 4. Given the ad hoc nature of the 
assumptions used in the comparison, this level of agreement is probably satisfactory. 

It is interesting to compare our data with previous results reported by Behringer 
& Ahlers (1982) for aspect ratios 2.08, 4.72 and 57, results reported by Pfotenhauer 
(1984), Pfotenhauer & Donnelly (1985), and Pfotenhauer et a,?. (1984), for aspect 
ratios 7.81 and 4.93, and results reported by Behringer et al. (1982) for aspect ratios 
6.22 and 7.87. All these results pertain to liquid helium in cylindrical containers. N ,  
values for these experiments are displayed in figure 12; the results of this work are 
represented by the solid curves and some solid circles in order to avoid confusion. 
In general there is only approximate agreement among the various sets of data, with 
some exceptions. In particular the results by Behringer et al. (1982) for r = 7.87 are 
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FIGURE 11. Experimental values of N, ,  the initial slope of the NusselGRayleigh curve versus aspect 
ratio r. The heavy horizontal dashed line is the prediction, in the large-r limit, by Ahlers et al. 
(1981) for parallel rolls in a cylindrical container. Solid heavy lines indicate the oscillations in N ,  
which are superposed on an overall increase of N ,  with aspect ratio when r is small. The vertical 
dashed lines correspond to changes in the number of convection rolls, as inferred from data by 
Behringer et al. (1983), and Gao & Behringer (1984). Also shown as the thin solid line is an estimate, 
based on the multimode analysis of Ahlers et al. (1981), for N ,  when the flow pattern is axisymmetric 
with a central node. 

significantly lower - by an amount exceeding experimental error - than others for 
nearby r-values. We speculate that the flows in this container were qualitatively 
different from those in other experiments with comparable aspect ratios. Different 
flow patterns in similar geometries may be generated by differences in the thermal 
properties of the sidewalls and the way in which a steady state is reached. To our 
knowledge, however, there are no calculations that address which pattern will form 
in a cylinder as the sidewall thermal conditions change. The result of Ahlers et al. 
(1981) and of Behringer & Ahlers (1982) for f = 4.72, namely Nl = 0.83 for Pr = 0.78, 
falls higher than the present data. However, these experiments were complicated by 
the presence of a state towards which the flow seemed to evolve initially, but which 
was not stable relative to the final pattern. An estimated slope for the 'metastable' 
state, N ,  = 0.56, falls near the range found for the variable-f experiments. In  the 
present work no metastable states were ever observed. However, the small steps in 
RIR, and the long waiting times of x20t, would not have revealed transient states, 
such as those reported by Ahlers et al. (1981) and by Behringer & Ahlers (1982), which 
decayed in times less than or order of 20t,. The results of Pfotenhauer (1984) and 
Pfotenhauer et al. (1984) show significant variations in N ,  which are not systematically 
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FIQURE 12. Comparison of N ,  versus r from previous data by Pfotenhauer et al. (1984) (m), 
Behringer & Ahlers (1982) (A (obtained from data for a metastable state), A). Behringer et al. 
(1982) (O) ,  and present data (- , 0) .  Horizontal dashed lines show, in the large-r limit, 
theoretical predictions by Ahlers et al. (1981) for single-mode axisymmetric flow with a central node 
(A-N), and parallel rolls (P). The upper thin solid line is derived from the multimode calculation 
of Ahlers et al. (1981) for axisymmetric flow with a central node. The sloping dashed line passes 
through two values of Nl calculated by Charlson & Sani (1975) for axisymmetric flow in a container 
with insulating sidewalls (Pr = 1). 

related to variations in Pr or r. For r= 7.81, for instance, the values of N ,  seem 
to fall either near N ,  x 0.91 or 0.72. As noted by these authors, these results cannot 
be understood in terms of the predicted slope of any one flow state, nor can 
Prandtl-number effects, which are expected to be negligible over 0.5 5 Pr 5 1.0, 
(Schluter et al. 1965; Ahlers et al. 1981) reasonably account for these observations. 
That N ,  does vary only weakly with Pr is demonstrated in figure 13 where we show 
fractional variations of N,(Pr)  for r = 12.523; the solid line represents the relative 
variations in N ,  expected from the infinite-aspect-ratio calculations of Schluter et al. 
(1965). Thus, Pfotenhauer et al. suggest that more than one pattern routinely formed 
in their experiments. 

Also indicated as dashed lines in figure 12 are the theoretical predictions of Nl by 
Ahlers et al. (1981) for flow patterns with parallel rolls (P), and the single-mode 
approximation for axisymmetric rolls with a central node (A - N). Although results 
for the slope for an axisymmetric flow with a finite centre amplitude exist (Brown 
& Stewartson 1978, 1979; Ahlers et al. 1981), they pertain to stress-free horizontal 
boundaries which do not apply to these experiments; accordingly, these results are 
not shown in figure 12. We also show by the upper thin solid line an estimate of the 
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FIQURE 13. Relative variations in the initial slope Ni versus Prandtl number Pr for the fixed aspect 
ratio 12.932. The solid line indicates the fractional variation of N ,  expected on the basis of theory 
(Ahlers et al. 1981 ; Schliiter et al. 1965). 

prediction for an axisymmetric pattern with a central node based on the multimode 
analysis of Ahlers et al. (1981), as discussed above. The slanted dashed line was drawn 
through the insulating-sidewall values of N ,  predicted by Charlson & Sani (1975) for 
r = 1.00 and 2.25 ; this curve forms an approximate lower bound to the experimental 
data in the applicable region. 

4.3. Experimental error 

In  addition to the direct measurement errors, which are typically smaller than 0.1 % 
in Nand therefore affect N, very little there is a possible systematic error associated 
with removing the contribution of the vertical walls from the measured heat flux. 
Errors in determining the wall contribution lead to an error SN, in N, of 

where SA,/A, is the fractional uncertainty in the vertical wall conductance A,, and 
A ,  is the conductance of the liquid. Typically, A,/A, z 0.25. The precision with 
which A, is obtained is better than 0.1 yo, although it is conceivable that systematic 
errors are higher. These systematic errors can occur if the vertical walls are not 
completely attached thermally a t  the top and bottom boundaries. In  this case, the 
wall conductance that is measured in the absence of liquid is lower than that with 
liquid. Thus, subtracting an empty conductivity does not correctly account for the 
wall contribution. In  addition, walls with finite, non-zero thermal conductivity can 
support horizontal heat flow which is also not rigorously accounted for by subtracting 
an empty conductivity for vertical heat flow. We believe such effects to be small but 
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FIGURE 14. Nusselt number N versus RIR, showing the rounded region near the onset of convection. 
The symbols indicate data for l- = 57 (0) and r = 4.72 (0) by Behringer & Ahlers (1982), data for 
l- = 5.27 by Ahlers (1975) (O) ,  and data for r = 8.390 by the present authors (A). 

still present in recent helium measurements. It seems possible that errors in the wall 
conductivity could create systematic uncertainties in N ,  of up to a few percent, but 
not much more. 

4.4. Rounding near onset 

We turn now to the small amount of rounding observed near R,. In  figure 14, we 
compare the amount of rounding in the present data with previous measurements. 
Our results show more rounding than those of Behringer & Ahlers (1982) for r = 4.72 
but less than their results for r = 57 or the data of Ahlers (1975) for r= 5.27. 
Surprisingly, we find little variation in the amount of rounding as we vary r. This 
is shown in figure 6 which provides a comparison of data near onset for aspect ratios 
spanning the range of our data. 

Rounding observed near R, in the heat transport is usually attributed either to 
imperfections in the cell geometry (Kelly & Pal 1978) or to imperfect thermal 
boundaries such as poorly attached sidewalls (Daniels 1977; Hall & Walton 1977; 
Brown & Stewartson 1978, 1979). For our experimental arrangement, both geo- 
metrical defects and sidewall heating are very small, but the difference in the two 
effects should depend on aspect ratio. In  particular if the rounding is caused by spatial 
inhomogeneities, such as a variation in height throughout the layer by + 6 d ,  we 
would expect that the rounding would increase with T i n  the present apparatus. This 
follows because d will decrease with increasing r, whereas 6d presumably remains 
fixed. On the other hand, if the rounding is attributable to sidewall heating effects, 
it  should depend less sensitively on aspect ratio. As discussed previously, the finite 
size of the container may also lead to a weak variation in N ( R )  near onset which, 
in an experiment, would be difficult to separate from rounding due to imperfections. 
For axisymmetric flow with a finite centre amplitude, Brown & Stewartson (1979) 
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find that such an effect will occur over a reduced Rayleigh-number range of z 2 / P .  
This prediction is not consistent with our observations. Given our ignorance of the 
details of any imperfections, our uncertainty of the flow patterns, and the lack of 
theory describing rounding for non-slip boundaries, we have not attempted a detailed 
analysis of the experimental rounding. 

4.5. Comparison with room-temperature experiments 
As a final comment, we note that recent flow visualization in convecting cylindrical 
layers of water (Pr z 4) show time-dependent behaviour very near R,. The time 
dependence consists of changes in the convection pattern and occurs for 
R, 5 R 5 1 .3R,. In  these measurements by Heutmaker, Fraenkel and Gollub (1985) 
and by Ahlers et al. (1985) no variations in N(R) were detectable to a level of 0.1 yo. 
In  our measurements, which have a best-case resolution of 0.005%, no time 
dependence in N was seen for R, < R < R,. The time dependence beginning a t  R, 
consists of steady periodic oscillations. We note that Pocheau et al. (1985) have 
recently reported flow-visualization measurements on room-temperature argon gas 
in a cylindrical container with a Prandtl number Pr = 0.69. They find steady flow 
patterns of approximately parallel rolls up to a value of R, comparable with values 
found in liquid-helium experiments of similar Prandtl number. Just  above R, they 
report periodic time dependence. Although J .  P. Gollub & M. S. Heutmaker (1984, 
private communication) report periodic time dependence at higher R in water, a 
quantitative comparison with the lower-Pr experiments is not yet possible. Indeed, 
the relation between the low-Pr liquid-helium and argon-gas measurements and those 
a t  higher Pr made with room-temperature fluids needs clarification. 

5. Summary 
We have first provided details of an apparatus that allows us to make high-precision 

measurements of the Nusselt number N as a function of the Rayleigh number R. We 
can adjust the aspect ratio of the apparatus in the range 2.4 < r < 25, although we 
have limited our results to r 5 16 in order to clearly avoid non-Boussinesq effects. 

The primary results presented here are values of the slope N ,  = R,dN/dR 
evaluated in the weakly nonlinear regime just above R,. Our data show in a 
consistent way how the Nusselt number responds to variations in the aspect ratio. 
Values of Nl with 6 5 T 5  16 are in agreement with the variational prediction by 
Ahlers et al. (1981) who give N, = 0.72 for straight parallel rolls confined in a 
cylindrical geometry. We suggest that in our larger-aspect-ratio range, the convection 
pattern is usually characterized by approximately straight rolls. In  support of this 
suggestion we note the agreement between the data and the parallel-roll prediction, 
and the observation from room-temperature experiments that non-axisymmetric 
patterns usually form when R is increased gradually, as in our experiments. For 
r 5 6 the vertical walls cause a substantial reduction in N,. For the small-aspect-ratio 
range of our experiments, there is less theoretical information regarding the flow 
pattern, which may vary significantly as rchanges by z 1 .  An interpolation between 
predictions of N, by Charlson & Sani (1975) for axisymmetric flows in small- 
aspect-ratio containers falls just below our data, and indeed, these interpolated 
results overlap our data for several of the smaller aspect ratios. 

Some rounding is visible in our data. Because the amount of rounding is nearly 
independent of r, we attribute it to the small sidewall heating effects and possibly 
the effect of finite aspect ratio. 
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Results for N ,  obtained by other experimenters include those by Pfotenhauer 
(1984), Pfotenhauer et al. (1984), Behringer et al. (1982), Behringer and Ahlers (1982) 
and Ahlers (1975). Some of these agree with our results. However, in some cases 
there is considerable disagreement and it seems unlikely that these experiments and 
our own at the same aspect ratio share the same flow pattern. 

In this work we also present a unique test of the cubic dependence of the critical 
Rayleigh number on d.  Values of R, are in good agrccmcnt with expectations. 

Notably, no time dependence was observed for R, < R < R,, where R, is the 
Rayleigh number for the onset of time dependence. As discussed by Behringer et al. 
(1983) and Gao & Behringer (1984), R, 2 1 . 1  R,, with R, as low as 1.1R, only for 
the largest aspect ratios. For R 2 R,, periodic time dependence was seen. These 
result>s are similar to recent experiments in argon (Pr = 0.69) by Pocheau et al. (1985) 
where straight parallel rolls were seen. Recently, however, Ahlers et al. (1985) and 
Heutmaker et al. (1985) have reported non-periodic time dependence very near R,. 
These experiments were carried out in moderate-aspect-ratio cylindrical containers 
using water (Pr x 4) as the fluid. The time dependence consisted of a continual change 
in the flow pattern. An interesting question is whether similar time dependence exists 
in the helium experiments but is not detectable by heat flux measurements. There is 
no clearly established connection between the low-Prandtl-number helium measure- 
ments and those made on room-temperature fluids having larger Prandtl numbers. 

This work was supported by the National Science Foundation under Low Tem- 
perature Physics Grant No. DMR-8314673. One of us (R. P. B.) acknowledges 
support by the Alfred P. Sloan Foundation. 
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